Correct orientation of cell division is extremely important in the maintenance, regeneration, and repair of continuously proliferating tissues, such as the epidermis. Regulation of the axis of division of epidermal cells prevents the apoptosis-induced compensatory proliferation, and eventually the cancer. Thus, the orientation of cell division is critical for maintaining the tissue architecture. In this study, we investigated the effects of S. europaea extract on the texture of human skin and the behavior of these cells during skin morphogenesis. In sun-exposed skin, S. europaea improved the texture. A multilayered, highly differentiated in vitro skin model indicated that, S. europaea extract suppressed the UVB-induced changes in the morphology of basal keratinocytes. Orientation of cell division was determined by measuring the axis of mitosis in the vertical sections of our experimental model. Analyses of the digital images revealed that S. europaea preserved the axis of division of basal keratinocytes from UVB-induced perturbations. Our findings uncover a new mechanism by which S. europaea responds to the spindle misorientation induced by UVB.