In recent years, videos and images in 720p (HD), 1080p (FHD) and 4K (UHD) resolution have become more popular for display devices such as TVs, mobile phones and VR. However, these high resolution images cannot achieve the expected visual effect due to the limitation of the internet bandwidth, and bring a great challenge for super-resolution networks to achieve real-time performance. Following this challenge, we explore multiple efficient network designs, such as pixel-unshuffle, repeat upscaling, and local skip connection removal, and propose a fast and lightweight super-resolution network. Furthermore, by analyzing the applications of the idea of divide-and-conquer in superresolution, we propose assembled convolutions which can adapt convolution kernels according to the input features. Experiments suggest that our method outperforms all the state-of-the-art efficient super-resolution models, and achieves optimal results in terms of runtime and quality.