The need for nuclear data for astrophysics applications challenges experimental techniques as well as the robustness and predictive power of present nuclear models. Most of the nuclear data evaluations and predictions are still performed on the basis of phenomenological nuclear models. In the last decades, important progress has been achieved in fundamental nuclear physics, making it now feasible to use more reliable, but also more complex microscopic or semi-microscopic models in the evaluation and prediction of nuclear data for practical applications. In the present contribution, the reliability and accuracy of recent nuclear theories are discussed for most of the quantities needed to estimate reaction cross sections and beta-decay rates, namely nuclear masses, nuclear level densities, gamma-ray strength, fission properties and beta-strength functions. It is shown that nowadays, mean-field models can be tuned at the same level of accuracy as the phenomenological models, renormalized on experimental data if needed, and therefore can replace the phenomenological inputs in the prediction of nuclear data. While fundamental nuclear physicists keep on improving state-of-the-art models, in particular the shell or ab-initio models, nuclear applications could make use of their most recent results as quantitative constraints or guides to improve the predictions in energy or mass domain that will remain inaccessible experimentally.