The role of the selenoproteome, which is the collection of all proteins containing selenium in an organism, in cancer development, growth and progression requires further investigation, due to the importance of selenium in both cancer and immune system function. Data about the selenoproteome, including its differential expression, single nucleotide variations, copy number variations, methylation, pathways and overall survival (OS) in five leading types of cancer are available from the GSCALite website. Subsequent to the analysis of these datasets, it was revealed that there was increased expression of GPX3 in stomach adenocarcinoma and lung squamous cell carcinoma, SELENOV in oesophageal carcinoma, GPX8 and GPX4 in colon adenocarcinoma, TXNRD1 and SEPHS1 in hepatocellular carcinoma and GPX8 in lung adenocarcinoma were associated with poor survival. Decreased gene expression of SELENOP was indicated in liver hepatocellular carcinoma and GPX3, and SELENOW, SELENOK, SELENBP1 and SECISBP2 in lung adenocarcinoma were associated with a poor prognosis. OS data suggested that hypermethylation of GPX4 in colon adenocarcinoma, GPX8 in lung squamous cell carcinoma, GPX1 in stomach adenocarcinoma and GPX3 in lung adenocarcinoma was associated with low survival, as is hypomethylation of GPX5 in lung adenocarcinoma. The selenoproteome is heterogeneous, especially in its effect on the OS of patients with cancer. The present study demonstrated that the roles of GPX4 in colon adenocarcinoma, SCLY and SELENOV in oesophageal carcinoma, SEPHS1 in liver hepatocellular carcinoma, SELENOK in lung cancer, as well as SELENOM and SELENOW in stomach adenocarcinoma requires further research. The present study may lead to the identification of novel biomarkers or potential therapeutic targets for use in the treatment of cancers, such as colon adenocarcinoma, oesophageal carcinoma, liver hepatocellular carcinoma, lung cancer and stomach adenocarcinoma.