Epithelial cells lining the inner surface of the intestinal epithelium are in direct contact with a lumenal environment that varies dramatically with diet. It has long been suggested that the intestinal epithelium can sense the nutrient composition of lumenal contents. It is only recently that the nature of intestinal nutrient-sensing molecules and underlying mechanisms have been elucidated. There are a number of nutrient sensors expressed on the luminal membrane of endocrine cells that are activated by various dietary nutrients. We showed that the intestinal glucose sensor, T1R2 + T1R3 and the G-protein, gustducin are expressed in endocrine cells. Eliminating sweet transduction in mice in vivo by deletion of either gustducin or T1R3 prevented dietary monosaccharide-and artificial sweetener-induced up-regulation of the Na + /glucose cotransporter, SGLT1 observed in wild-type mice. Transgenic mice, lacking gustducin or T1R3 had deficiencies in secretion of glucagon-like peptide 1 (GLP-1) and, glucose-dependent insulinotrophic peptide (GIP). Furthermore, they had an abnormal insulin profile and prolonged elevation of postprandial blood glucose in response to orally ingested carbohydrates. GIP and GLP-1 increase insulin secretion, while glucagon-like peptide 2 (GLP-2) modulates intestinal growth, blood flow and expression of SGLT1. The receptor for GLP-2 resides in enteric neurons and not in any surface epithelial cells, suggesting the involvement of the enteric nervous system in SGLT1 up-regulation. The accessibility of the glucose sensor and the important role that it plays in regulation of intestinal glucose absorption and glucose homeostasis makes it an attractive nutritional and therapeutic target for manipulation.Intestine: Glucose sensor: Nutrient: Neuroendocrine: SGLT1The intestinal epithelium is lined with a single layer of epithelial cells that undergoes rapid and continuous renewal. The stem cell located near the base of the crypt of Lieberkühn gives rise to absorptive enterocytes, and three types of secretory cells; mucus producing goblet, Paneth and enteroendocrine. Paneth cells, which secrete antimicrobial peptides, digestive enzymes and growth factors, complete their differentiation at the crypt base. The other three epithelial lineages differentiate during a highly organised upward migration from the crypt to the villus tip where they are extruded into the intestinal lumen (1,2) . This process takes about 2-3 d in most species (3)(4)(5) . Enterocytes constitute the majority (90 %) of cells lining the villus (Fig. 1). They are involved in vectorial transport of nutrients from the lumen of the intestine to the systemic system. These polarised cells possess two distinct membrane domains, the apical (brush border) and basolateral. These membranes differ in structure, function and surface charges (6) ; properties that have facilitated their isolation in pure form as brush-border or basolateral membrane vesicles. Brush-border membrane vesicles have been used frequently for measurements of digestive enzyme...