BackgroundProbiotics are proposed to positively modulate the intestinal epithelial barrier formed by intestinal epithelial cells (IECs) and intercellular junctions. Disruption of this border alters paracellular permeability and is a key mechanism for the development of enteric infections and inflammatory bowel diseases (IBDs).Methodology and Principal FindingsTo study the in vivo effect of probiotic Escherichia coli Nissle 1917 (EcN) on the stabilization of the intestinal barrier under healthy conditions, germfree mice were colonized with EcN or K12 E. coli strain MG1655. IECs were isolated and analyzed for gene and protein expression of the tight junction molecules ZO-1 and ZO-2. Then, in order to analyze beneficial effects of EcN under inflammatory conditions, the probiotic was orally administered to BALB/c mice with acute dextran sodium sulfate (DSS) induced colitis. Colonization of gnotobiotic mice with EcN resulted in an up-regulation of ZO-1 in IECs at both mRNA and protein levels. EcN administration to DSS-treated mice reduced the loss of body weight and colon shortening. In addition, infiltration of the colon with leukocytes was ameliorated in EcN inoculated mice. Acute DSS colitis did not result in an anion secretory defect, but abrogated the sodium absorptive function of the mucosa. Additionally, intestinal barrier function was severely affected as evidenced by a strong increase in the mucosal uptake of Evans blue in vivo. Concomitant administration of EcN to DSS treated animals resulted in a significant protection against intestinal barrier dysfunction and IECs isolated from these mice exhibited a more pronounced expression of ZO-1.Conclusion and SignificanceThis study convincingly demonstrates that probiotic EcN is able to mediate up-regulation of ZO-1 expression in murine IECs and confer protection from the DSS colitis-associated increase in mucosal permeability to luminal substances.
The oncofetal mRNA-binding protein IGF2BP1 and the transcriptional regulator SRF modulate gene expression in cancer. In cancer cells, we demonstrate that IGF2BP1 promotes the expression of SRF in a conserved and N6-methyladenosine (m6A)-dependent manner by impairing the miRNA-directed decay of the SRF mRNA. This results in enhanced SRF-dependent transcriptional activity and promotes tumor cell growth and invasion. At the post-transcriptional level, IGF2BP1 sustains the expression of various SRF-target genes. The majority of these SRF/IGF2BP1-enhanced genes, including PDLIM7 and FOXK1, show conserved upregulation with SRF and IGF2BP1 synthesis in cancer. PDLIM7 and FOXK1 promote tumor cell growth and were reported to enhance cell invasion. Consistently, 35 SRF/IGF2BP1-dependent genes showing conserved association with SRF and IGF2BP1 expression indicate a poor overall survival probability in ovarian, liver and lung cancer. In conclusion, these findings identify the SRF/IGF2BP1-, miRNome- and m6A-dependent control of gene expression as a conserved oncogenic driver network in cancer.
The identity of the transporter responsible for fructose absorption in the intestine in vivo and its potential role in fructose-induced hypertension remain speculative. Here we demonstrate that Glut5 (Slc2a5) deletion reduced fructose absorption by ϳ75% in the jejunum and decreased the concentration of serum fructose by ϳ90% relative to wild-type mice on increased dietary fructose. When fed a control (60% starch) diet, Glut5 ؊/؊ mice had normal blood pressure and displayed normal weight gain. However, whereas Glut5 ؉/؉ mice showed enhanced salt absorption in their jejuna in response to luminal fructose and developed systemic hypertension when fed a high fructose (60% fructose) diet for 14 weeks, Glut5 ؊/؊ mice did not display fructose-stimulated salt absorption in their jejuna, and they experienced a significant impairment of nutrient absorption in their intestine with accompanying hypotension as early as 3-5 days after the start of a high fructose diet. Examination of the intestinal tract of Glut5 ؊/؊ mice fed a high fructose diet revealed massive dilatation of the caecum and colon, consistent with severe malabsorption, along with a unique adaptive up-regulation of ion transporters. In contrast to the malabsorption of fructose, Glut5 ؊/؊ mice did not exhibit an absorption defect when fed a high glucose (60% glucose) diet. We conclude that Glut5 is essential for the absorption of fructose in the intestine and plays a fundamental role in the generation of fructose-induced hypertension. Deletion of Glut5 results in a serious nutrient-absorptive defect and volume depletion only when the animals are fed a high fructose diet and is associated with compensatory adaptive up-regulation of ion-absorbing transporters in the colon.
BACKGROUND & AIMS-Diarrhea results from reduced net fluid and salt absorption caused by an imbalance in intestinal absorption and secretion. The bulk of sodium and water absorption in the intestine is mediated by Na + /H + exchanger 3 (NHE3), located in the luminal membrane of enterocytes. We investigated the effect of lysophosphatidic acid (LPA) on Na + /H + exchanger activity and Na + -dependent fluid absorption in the intestine.
The epithelial anion channel CFTR interacts with multiple PDZ domain-containing proteins. Heterologous expression studies have demonstrated that the Na + /H + exchanger regulatory factors, NHERF1, NHERF2, and PDZK1 (NHERF3), modulate CFTR membrane retention, conductivity, and interactions with other transporters. To study their biological roles in vivo, we investigated CFTR-dependent duodenal HCO 3 -secretion in mouse models of Nherf1, Nherf2, and Pdzk1 loss of function. We found that Nherf1 ablation strongly reduced basal as well as forskolin-stimulated (FSK-stimulated) HCO 3 -secretory rates and blocked β 2 -adrenergic receptor (β 2 -AR) stimulation. Conversely, Nherf2 -/-mice displayed augmented FSK-stimulated HCO 3 -secretion. Furthermore, although lysophosphatidic acid (LPA) inhibited FSK-stimulated HCO 3 -secretion in WT mice, this effect was lost in Nherf2 -/-mice. Pdzk1 ablation reduced basal, but not FSK-stimulated, HCO 3 -secretion. In addition, laser microdissection and quantitative PCR revealed that the β 2 -AR and the type 2 LPA receptor were expressed together with CFTR in duodenal crypts and that colocalization of the β 2 -AR and CFTR was reduced in the Nherf1 -/-mice. These data suggest that the NHERF proteins differentially modulate duodenal HCO 3 -secretion: while NHERF1 is an obligatory linker for β 2 -AR stimulation of CFTR, NHERF2 confers inhibitory signals by coupling the LPA receptor to CFTR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.