Owing to variation of individual cells within a population, single-cell studies are of great interest to researchers. Recent developments in nanofabrication technology have made this area increasingly attractive as one-dimensional (1D) nanoscale probes can be manufactured with increasing accuracy. Here, we provide an overview and description of the major designs that have been reported to date. For more details of what applications could be realized and how, based on the probe shapes and designs, we summarize the most recently reported performances of 1D single-cell probes with their advantages and limitations. Minimally invasive probes are required for long-term experiments on single cells. Carbon nanotubes with their unique properties and structure are excellent candidates for multitask robotic intracellular probes. Carbon nanotube-tipped cellular endoscopes are less invasive compared with pipettes or cantilever tips. Advances in nanofabrication techniques have made it possible to produce more consistent nanoscale cellular probes that can capture a variety of information from optical, electrical and chemical signals. In addition, these tools can transfer tiny amounts of fluids and molecular materials in a highly localized fashion for the purpose of analyzing or stimulating a variety of responses at the level of individual cells and even cellular organelles. We conclude with a critical analysis of the current state of the field as well as the major obstacles for further probe development of minimally invasive probes and their widespread use in cell biology.