Data analysis workflows in High Energy Physics (HEP) read data written in the ROOT columnar format. Such data has traditionally been stored in files that are often read via the network from remote storage facilities, which represents a performance penalty especially for data processing workflows that are I/O bound. To address that issue, this paper presents a new caching mechanism, implemented in the I/O subsystem of ROOT, which is independent of the storage backend used to write the dataset. Notably, it can be used to leverage the speed of high-bandwidth, low-latency object stores. The performance of this caching approach is evaluated by running a real physics analysis on an Intel DAOS cluster, both on a single node and distributed on multiple nodes.