Minimising time and cost is key to exploit private or commercial clouds. This can be achieved by increasing setup and operational efficiencies. The success and sustainability are thus obtained reducing the learning curve, as well as the operational cost of managing community-specific services running on distributed environments. The greater beneficiaries of this approach are communities willing to exploit opportunistic cloud resources. DODAS builds on several EOSC-hub services developed by the INDIGO-DataCloud project and allows to instantiate on-demand container-based clusters. These execute software applications to benefit of potentially “any cloud provider”, generating sites on demand with almost zero effort. DODAS provides ready-to-use solutions to implement a “Batch System as a Service” as well as a BigData platform for a “Machine Learning as a Service”, offering a high level of customization to integrate specific scenarios. A description of the DODAS architecture will be given, including the CMS integration strategy adopted to connect it with the experiment’s HTCondor Global Pool. Performance and scalability results of DODAS-generated tiers processing real CMS analysis jobs will be presented. The Instituto de Física de Cantabria and Imperial College London use cases will be sketched. Finally a high level strategy overview for optimizing data ingestion in DODAS will be described.
Dynamic On Demand Analysis Service (DODAS) is a Platform as a Service tool built combining several solutions and products developed by the INDIGO-DataCloud H2020 project. DODAS allows to instantiate on-demand container-based clusters. Both HTCondor batch system and platform for the Big Data analysis based on Spark, Hadoop etc, can be deployed on any cloud-based infrastructures with almost zero effort. DODAS acts as cloud enabler designed for scientists seeking to easily exploit distributed and heterogeneous clouds to process data. Aiming to reduce the learning curve as well as the operational cost of managing community specific services running on distributed cloud, DODAS completely automates the process of provisioning, creating, managing and accessing a pool of heterogeneous computing and storage resources. DODAS was selected as one of the Thematic Services that will provide multidisciplinary solutions in the EOSC-hub project, an integration and management system of the European Open Science Cloud starting in January 2018. The main goals of this contribution are to provide a comprehensive overview of the overall technical implementation of DODAS, as well as to illustrate two distinct real examples of usage: the integration within the CMS Workload Management System and the extension of the AMS computing model.
The projected Storage and Compute needs for the HL-LHC will be a factor up to 10 above what can be achieved by the evolution of current technology within a flat budget. The WLCG community is studying possible technical solutions to evolve the current computing in order to cope with the requirements; one of the main focus is resource optimization, with the ultimate aim of improving performance and efficiency, as well as simplifying and reducing operation costs. As of today the storage consolidation based on a Data Lake model is considered a good candidate for addressing HL-LHC data access challenges. The Data Lake model under evaluation can be seen as a logical system that hosts a distributed working set of analysis data. Compute power can be “close” to the lake, but also remote and thus completely external. In this context we expect data caching to play a central role as a technical solution to reduce the impact of latency and reduce network load. A geographically distributed caching layer will be functional to many satellite computing centers that might appear and disappear dynamically. In this talk we propose a system of caches, distributed at national level, describing both deployment and results of the studies made to measure the impact on the CPU efficiency. In this contribution, we also present the early results on novel caching strategy beyond the standard XRootD approach whose results will be a baseline for an AI-based smart caching system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.