Riser slug flow poses a significant challenge to offshore oil production systems, most especially for oil fields in their later life. Active control of slugging through choking has been proven a practical approach in eliminating riser slug flow in oil production pipeline-riser systems. However, existing conventional active slug control systems may reduce oil production significantly due to excessive over choking. Again, some of the existing active slug flow control systems rely on seabed measurements, which are difficult to maintain, costly to install, unreliable, and seldom readily available. This study is an experimental investigation of the feasibility of active riser slug control by taking topside differential pressure measurement from the inlet of the venturi flow meter to the throat. Experimental results indicate that under active slug flow control, the system was able to eliminate slug flow at a higher valve opening when compared to manual choking. A valve opening of 24% with riser base pressure at 2.85 bar from open loop unstable of 23% was recorded, which is superior to manual choking which maintained flow stability up to 21% valve opening with riser base pressure of 3.8 bar.