This Publication has to be referred as: Beltran Prieto, L[uis] A[ntonio] & Kominkova Oplatkova, Z[uzana] (2017). Emotion Recognition in Video with
AbstractEmotions are people's reactions to certain stimuli. Most common way to detect an emotion is by facial expression analysis. Machine learning algorithms combined with other artificial intelligence techniques have been developed in order to identify expressions found in images and videos. Support Vector Machines, along with Haar Cascade classifiers can be used for efficient emotion recognition. OpenCV, an open-source library for machine learning, makes it possible to develop computer-vision applications. Cognitive Services is a free set of APIs which easily integrate artificial intelligence in applications. In this paper a comparison between two implementations of Emotion Recognition algorithms, namely SVM and Cognitive Services API, was carried out to compare their performance. For this research, 500 tests were performed per experiment. The SVM implementation in OpenCV obtained the best performance, with an 84% accuracy, which can be boosted by increasing the sample size per emotion.