This paper introduces an architecture as a proof-of-concept for emotion detection and regulation in smart health environments. The aim of the proposal is to detect the patient's emotional state by analysing his/her physiological signals, facial expression and behaviour. Then, the system provides the best-tailored actions in the environment to regulate these emotions towards a positive mood when possible. The current state-of-the-art in emotion regulation through music and colour/light is implemented with the final goal of enhancing the quality of life and care of the subject. The paper describes the three main parts of the architecture, namely "Emotion Detection", "Emotion Regulation" and "Emotion Feedback Control". "Emotion Detection" works with the data captured from the patient, whereas "Emotion Regulation" offers him/her different musical pieces and colour/light settings. "Emotion Feedback Control" performs as a feedback control loop to assess the effect of emotion regulation over emotion detection. We are currently testing the overall architecture and the intervention in real environments to achieve our final goal.
This article introduces a new and unobtrusive wearable monitoring device based on electrodermal activity (EDA) to be used in health-related computing systems. This paper introduces the description of the wearable device capable of acquiring the EDA of a subject in order to detect his/her calm/distress condition from the acquired physiological signals. The lightweight wearable device is placed in the wrist of the subject to allow continuous physiological measurements. With the aim of validating the correct operation of the wearable EDA device, pictures from the International Affective Picture System are used in a control experiment involving fifty participants. The collected signals are processed, features are extracted and a statistical analysis is performed on the calm/distress condition classification. The results show that the wearable device solely based on EDA signal processing reports around 89% accuracy when distinguishing calm condition from distress condition.
This paper introduces the design of a new wearable photoplethysmography (PPG) sensor and its assessment for mental distress estimation. In our design, a PPG sensor obtains blood volume information by means of an optical plethysmogram technique. A number of temporal, morphological and frequency markers are computed using time intervals between adjacent normal cardiac cycles to characterize pulse rate variability (PRV). In order to test the efficiency of the developed wearable for classifying distress versus calmness, the well-known International Affective Picture System has been used to induce different levels of arousal in forty-five healthy participants. The obtained results have shown that temporal features present a single discriminant power between emotional states of calm and stress, ranging from 67 to 72%. Moreover, a discriminant tree-based model is used to assess the possible underlying relationship among parameters. In this case, the combination of temporal parameters reaches 82.35% accuracy. Considering the low difficulty of metrics and methods used in this work, the algorithms are prepared to be embedded into a micro-controller device to work in real-time and in a long-term fashion.
Abstract:The electroencephalogram (EEG) is the most common tool used to study mental disorders. In the last years, the use of this recording for recognition of negative stress has been receiving growing attention. However, precise identification of this emotional state is still an interesting unsolved challenge. Nowadays, stress presents a high prevalence in developed countries and, moreover, its chronic condition often leads to concomitant physical and mental health problems. Recently, a measure of time series irregularity, such as quadratic sample entropy (QSEn), has been suggested as a promising single index for discerning between emotions of calm and stress. Unfortunately, this index only considers repetitiveness of similar patterns and, hence, it is unable to quantify successfully dynamics associated with the data temporal structure. With the aim of extending QSEn ability for identification of stress from the EEG signal, permutation entropy (PEn) and its modification to be amplitude-aware (AAPEn) have been analyzed in the present work. These metrics assess repetitiveness of ordinal patterns, thus considering causal information within each one of them and obtaining improved estimates of predictability. Results have shown that PEn and AAPEn present a discriminant power between emotional states of calm and stress similar to QSEn, i.e., around 65%. Additionally, they have also revealed complementary dynamics to those quantified by QSEn, thus suggesting a synchronized behavior between frontal and parietal counterparts from both hemispheres of the brain. More precisely, increased stress levels have resulted in activation of the left frontal and right parietal regions and, simultaneously, in relaxing of the right frontal and left parietal areas. Taking advantage of this brain behavior, a discriminant model only based on AAPEn and QSEn computed from the EEG channels P3 and P4 has reached a diagnostic accuracy greater than 80%, which improves slightly the current state of the art. Moreover, because this classification system is notably easier than others previously proposed, it could be used for continuous monitoring of negative stress, as well as for its regulation towards more positive moods in controlled environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.