Recognition of emotions is still an unresolved challenge, which could be helpful to improve current human-machine interfaces. Recently, nonlinear analysis of some physiological signals has shown to play a more relevant role in this context than their traditional linear exploration. Thus, the present work introduces for the first time the application of three recent entropy-based metrics: sample entropy (SE), quadratic SE (QSE) and distribution entropy (DE) to discern between emotional states of calm and negative stress (also called distress). In the last few years, distress has received growing attention because it is a common negative factor in the modern lifestyle of people from developed countries and, moreover, it may lead to serious mental and physical health problems. Precisely, 279 segments of 32-channel electroencephalographic (EEG) recordings from 32 subjects elicited to be calm or negatively stressed have been analyzed. Results provide that QSE is the first single metric presented to date with the ability to identify negative stress. Indeed, this metric has reported a discriminant ability of around 70%, which is only slightly lower than the one obtained by some previous works. Nonetheless, discriminant models from dozens or even hundreds of features have been previously obtained by using advanced classifiers to yield diagnostic accuracies about 80%. Moreover, in agreement with previous neuroanatomy findings, QSE has also revealed notable differences for all the brain regions in the neural activation triggered by the two considered emotions. Consequently, given these results, as well as easy interpretation of QSE, this work opens a new standpoint in the detection of emotional distress, which may gain new insights about the brain's behavior under this negative emotion.
Automatic identification of negative stress is an unresolved challenge that has received great attention in the last few years. Many studies have analyzed electroencephalographic (EEG) recordings to gain new insights about how the brain reacts to both short- and long-term stressful stimuli. Although most of them have only considered linear methods, the heterogeneity and complexity of the brain has recently motivated an increasing use of nonlinear metrics. Nonetheless, brain dynamics reflected in EEG recordings often exhibit a multiscale nature and no study dealing with this aspect has been developed yet. Hence, in this work two nonlinear indices for quantifying regularity and predictability of time series from several time scales are studied for the first time to discern between visually elicited emotional states of calmness and negative stress. The obtained results have revealed the maximum discriminant ability of 86.35% for the second time scale, thus suggesting that brain dynamics triggered by negative stress can be more clearly assessed after removal of some fast temporal oscillations. Moreover, both metrics have also been able to report complementary information for some brain areas.
Abstract:The electroencephalogram (EEG) is the most common tool used to study mental disorders. In the last years, the use of this recording for recognition of negative stress has been receiving growing attention. However, precise identification of this emotional state is still an interesting unsolved challenge. Nowadays, stress presents a high prevalence in developed countries and, moreover, its chronic condition often leads to concomitant physical and mental health problems. Recently, a measure of time series irregularity, such as quadratic sample entropy (QSEn), has been suggested as a promising single index for discerning between emotions of calm and stress. Unfortunately, this index only considers repetitiveness of similar patterns and, hence, it is unable to quantify successfully dynamics associated with the data temporal structure. With the aim of extending QSEn ability for identification of stress from the EEG signal, permutation entropy (PEn) and its modification to be amplitude-aware (AAPEn) have been analyzed in the present work. These metrics assess repetitiveness of ordinal patterns, thus considering causal information within each one of them and obtaining improved estimates of predictability. Results have shown that PEn and AAPEn present a discriminant power between emotional states of calm and stress similar to QSEn, i.e., around 65%. Additionally, they have also revealed complementary dynamics to those quantified by QSEn, thus suggesting a synchronized behavior between frontal and parietal counterparts from both hemispheres of the brain. More precisely, increased stress levels have resulted in activation of the left frontal and right parietal regions and, simultaneously, in relaxing of the right frontal and left parietal areas. Taking advantage of this brain behavior, a discriminant model only based on AAPEn and QSEn computed from the EEG channels P3 and P4 has reached a diagnostic accuracy greater than 80%, which improves slightly the current state of the art. Moreover, because this classification system is notably easier than others previously proposed, it could be used for continuous monitoring of negative stress, as well as for its regulation towards more positive moods in controlled environments.
Distress is a critical problem in developed societies given its long-term negative effects on physical and mental health. The interest in studying this emotion has notably increased during last years, being electroencephalography (EEG) signals preferred over other physiological variables in this research field. In addition, the non-stationary nature of brain dynamics has impulsed the use of non-linear metrics, such as symbolic entropies in brain signal analysis. Thus, the influence of time-lag on brain patterns assessment has not been tested. Hence, in the present study two permutation entropies denominated Delayed Permutation Entropy and Permutation Min-Entropy have been computed for the first time at different time-lags to discern between emotional states of calmness and distress from EEG signals. Moreover, a number of curve-related features were also calculated to assess brain dynamics across different temporal intervals. Complementary information among these variables was studied through sequential forward selection and 10-fold cross-validation approaches. According to the results obtained, the multi-lag entropy analysis has been able to reveal new significant insights so far undiscovered, thus notably improving the process of distress recognition from EEG recordings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.