In this work, the electrostatic discharge (ESD) characteristics of a pMOS-triggered bidirectional silicon-controlled rectifier (PTBSCR) that was fabricated in a 0.18 μm silicon-on-insulator (SOI) bipolar-CMOS-DMOS (BCD) process, is investigated. The multi-snapback phenomenon was observed under the transmission line pulsing (TLP) test system. It was found that gate voltage and inserting shallow trench isolation (STI) can significantly affect the trigger voltage and holding voltage. The underlying physical mechanism related to the multi-snapback phenomenon and the effects of gate voltage on the critical parameters was investigated through the experimental results and the assistance of technology computer-aided design (TCAD) simulations. The adjustments of gate voltage and STI on the critical ESD parameters of the device provide an effective design idea for low-voltage ESD protection in the SOI BCD process.