Abstract. The vegetation optical depth (VOD) measured at microwave frequencies is related to the vegetation water content and provides information complementary to visible/infra-red vegetation indices. This study is devoted to the characterisation of a new VOD data set obtained from SMOS (Soil Moisture and Ocean Salinity) satellite observations at L-band (1.4 GHz).Three different SMOS L-band VOD (L-VOD) data sets (SMOS Level 2, Level 3 and SMOS-IC) were compared with data sets on tree height, visible/infra-red indexes (NDVI, EVI), cumulated precipitation, and above ground biomass (AGB) for the 5 African continent. For all relationships, SMOS-IC showed the lowest dispersion and highest correlation. Overall, we found a strong (R > 0.85) correlation with no clear sign of saturation between L-VOD and four AGB data sets. The relationship linking L-VOD to tree height (R = 0.87) and Baccini's AGB (R = 0.94) was strong and linear. The relationships between L-VOD and three other AGB data sets were linear per land cover class, but with a changing slope depending on the land cover type. For low vegetation classes, the annual mean of L-VOD spans a range from 0 to 0.7 and it is linearly correlation with the amount of 10 the average annual precipitations. SMOS L-VOD showed a higher sensitivity to AGB as compared to NDVI and K/X/C-VOD (VOD measured, respectively, at 19, 10.7, and 6.9 GHz). The results showed that although the spatial resolution of L-VOD is coarse (∼ 40 km), the high temporal frequency and sensitivity to AGB makes SMOS L-VOD a very promising index for large scale monitoring of the vegetation status, in particular biomass.