This study investigates the effects of printed circuit board (PCB) thickness on adjustable fountain and conventional wave soldering. The pin-through-hole (PTH) vertical fill is examined with three PCBs of different thicknesses (i.e., 1.6, 3.1, and 6.0 mm) soldered through adjustable fountain and conventional wave soldering at conveyor angles of 0 • and 6 •. The vertical fill of each PCB is the focus. The PTH solder profile is inspected with a non-destructive X-ray computed tomography scanning machine. The percentages of the PTH vertical fill of both soldering processes are also estimated and compared. The aspect ratio of the PCB is also investigated. Experimental results reveal that adjustable fountain wave soldering yields better vertical fill than conventional wave soldering. The vertical fill level of adjustable fountain wave soldering is 100%, 90%, and 50% for the 1.6, 3.1, and 6.0 mm PCB thickness, respectively. FLUENT simulation is conducted for the vertical fill of the solder profile. Simulation and experimental results show that the PTH solder profiles of the two soldering processes are almost identical. The effect of PCB thickness on PTH voiding is also discussed.