ABSTRACT:Conventional studies to assess the annual mass balance for glaciers rely on single point observations in combination with model and interpolation approaches. Just recently, airborne and spaceborne data is used to support such mass balance determinations. Here, we present an approach to map temporal changes of the snow cover in glaciated regions of Tyrol, Austria, using SAR-based satellite data. Two dual-polarized SAR images are acquired on 22 and 24 September 2014. As X and C-band reveal different backscattering properties of snow, both TerraSAR-X and RADARSAT-2 images are analysed and compared to ground truth data. Through application of filter functions and processing steps containing a Kennaugh decomposition, ortho-rectification, radiometric enhancement and normalization, we were able to distinguish between dry and wet parts of the snow surface. The analyses reveal that the wet-snow can be unambiguously classified by applying a threshold of -11 dB. Bare ice at the surface or a dry snowpack does not appear in radar data with such low backscatter values. From the temporal shift of wet-snow, a discrimination of accumulation areas on glaciers is possible for specific observation dates. Such data can reveal a periodic monitoring of glaciers with high spatial coverage independent from weather or glacier conditions.