The characteristics of an aboveground cosmic‐ray neutron sensor (CRNS) are evaluated for monitoring a mountain snowpack in the Austrian Alps from March 2014 to June 2016. Neutron counts were compared to continuous point‐scale snow depth (SD) and snow‐water‐equivalent (SWE) measurements from an automatic weather station with a maximum SWE of 600 mm (April 2014). Several spatially distributed Terrestrial Laser Scanning (TLS)‐based SD and SWE maps were additionally used. A strong nonlinear correlation is found for both SD and SWE. The representative footprint of the CRNS is in the range of 230–270 m. In contrast to previous studies suggesting signal saturation at around 100 mm of SWE, no complete signal saturation was observed. These results imply that CRNS could be transferred into an unprecedented method for continuous detection of spatially averaged SD and SWE for alpine snowpacks, though with sensitivity decreasing with increasing SWE. While initially different functions were found for accumulation and melting season conditions, this could be resolved by accounting for a limited measurement depth. This depth limit is in the range of 200 mm of SWE for dense snowpacks with high liquid water contents and associated snow density values around 450 kg m−3 and above. In contrast to prior studies with shallow snowpacks, interannual transferability of the results is very high regardless of presnowfall soil moisture conditions. This underlines the unexpectedly high potential of CRNS to close the gap between point‐scale measurements, hydrological models, and remote sensing of the cryosphere in alpine terrain.
Cosmic-ray neutron sensing (CRNS) is a promising non-invasive technique to estimate snow water equivalent (SWE) over large areas. In contrast to preliminary studies focusing on shallow snow conditions (SWE <130 mm), more recently the method was shown experimentally to be sensitive also to deeper snowpacks providing the basis for its use at mountain experimental sites. However, hysteretic neutron response has been observed for complex snow cover including patchy snow-free areas. In the present study we aimed to understand and support the experimental findings using a comprehensive neutron modeling approach. Several simulations have been set up in order to disentangle the effect on the signal of different land surface characteristics and to reproduce multiple observations during periods of snow melt and accumulation. To represent the actual land surface heterogeneity and the complex snow cover, the model used data from terrestrial laser scanning. The results show that the model was able to accurately reproduce the CRNS signal and particularly the hysteresis effect during accumulation and melting periods. Moreover, the sensor footprint was found to be anisotropic and affected by the spatial distribution of liquid water and snow as well as by the topography of the nearby mountains. Under fully snow-covered conditions the CRNS is able to accurately estimate SWE without prior knowledge about snow density profiles or other spatial anomalies. These results provide new insights into the characteristics of the detected neutron signal in complex terrain and support the use of CRNS for long-term snow monitoring in high elevated mountain environments.
Abstract. Climate change increases the occurrence and severity of droughts due to increasing temperatures, altered circulation patterns, and reduced snow occurrence. While Europe has suffered from drought events in the last decade unlike ever seen since the beginning of weather recordings, harmonized long-term datasets across the continent are needed to monitor change and support predictions. Here we present soil moisture data from 66 cosmic-ray neutron sensors (CRNSs) in Europe (COSMOS-Europe for short) covering recent drought events. The CRNS sites are distributed across Europe and cover all major land use types and climate zones in Europe. The raw neutron count data from the CRNS stations were provided by 24 research institutions and processed using state-of-the-art methods. The harmonized processing included correction of the raw neutron counts and a harmonized methodology for the conversion into soil moisture based on available in situ information. In addition, the uncertainty estimate is provided with the dataset, information that is particularly useful for remote sensing and modeling applications. This paper presents the current spatiotemporal coverage of CRNS stations in Europe and describes the protocols for data processing from raw measurements to consistent soil moisture products. The data of the presented COSMOS-Europe network open up a manifold of potential applications for environmental research, such as remote sensing data validation, trend analysis, or model assimilation. The dataset could be of particular importance for the analysis of extreme climatic events at the continental scale. Due its timely relevance in the scope of climate change in the recent years, we demonstrate this potential application with a brief analysis on the spatiotemporal soil moisture variability. The dataset, entitled “Dataset of COSMOS-Europe: A European network of Cosmic-Ray Neutron Soil Moisture Sensors”, is shared via Forschungszentrum Jülich: https://doi.org/10.34731/x9s3-kr48 (Bogena and Ney, 2021).
The study presents a data set of the interannual and intraannual snow depth distribution recorded by terrestrial laser scanning (TLS) scans at Weisssee snow research site in Austria between November 2014 and May 2018. The data set comprises 23 snow-on digital elevation models, one snow-off digital elevation model, and the difference raster calculated between a snow-off and snow-on scans. The relative accuracy of the TLS scans was determined by measuring the distance between snow-free planes from the snow-on and snow-off scans and shows mean values smaller than 0.03 m and standard deviations ranging between 0.02 and 0.1 m. The reliability of the snow depths derived from TLS was further assessed by comparing snow depths from snow probing, Global Navigation Satellite System measurements, and continuous snow depth measurements from the weather station. Comparison of the different measurement methods shows average deviations of less than 0.1 m. The data can be used for analysis and modeling of snow distribution or for assessing the representativeness of snow sensors or other remote sensing products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.