Abstract. Triatoma infestans and Panstrongylus megistus are relevant Chagas disease vectors. An apparent segregation among these triatomine species inside human households was suggested to rely on mutual repellence between them. However, P. megistus and T. infestans show aggregation responses to chemical signals emitted by the other species. These findings do not rule out the possibility that stimuli other than chemical signals could mediate repellence when these species exploit shelters simultaneously. In the present study, we investigated how P. megistus and T. infestans exploit shelters in controlled laboratory conditions and how insect density and environmental illumination modulate this behavior. We evaluated whether these species aggregate inside shelters or mutually repel each other. Panstrongylus megistus and T. infestans show specific patterns of shelter exploitation, which are differentially affected by insect density and environment illumination. In particular, P. megistus is more sensitive to insect density than T. infestans, whereas T. infestans shows higher sensitivity to illumination than P. megistus. Nevertheless, these species exploit shelters randomly without any apparent repellence.