Background
Declining ovarian function in advance-aged women and in premature ovarian insufficiency (POI) patients seriously affects quality of life, and there is currently no effective treatment to rescue ovarian function in clinic. Stem cell transplantation is a promising therapeutic strategy for ovarian aging, but its clinical application is limited due to the low efficiency and unclear mechanism. Here, a novel combination of umbilical cord-mesenchymal stem cells (UC-MSCs) and autocrosslinked hyaluronic acid (HA) gel is explored to rescue ovarian reserve and fecundity in POI and naturally aging mice.
Methods
To investigate HA prolonged the survival after UC-MSCs transplantation, PCR and immunofluorescence were performed to track the cells on day 1, 3, 7 and 14 after transplantation. The effects of HA on UC-MSCs were analyzed by CCK8 assay, RNA-sequencing and 440 cytokine array. In vivo experiments were conducted to evaluate the therapeutic effects of UC-MSCs combined with HA transplantation in 4-vinylcyclohexene diepoxide (VCD)-induced POI mice and naturally aging mice model. Ovarian function was analyzed by ovarian morphology, follicle counts, estrous cycle, hormone levels and fertility ability. To investigate the mechanisms of stem cell therapy, conditioned medium was collected from UC-MSCs and fibroblast. Both in vitro ovarian culture model and 440 cytokine array were applied to assess the paracrine effect and determine the underlying mechanism. Hepatocyte growth factor (HGF) was identified as an effective factor and verified by HGF cytokine/neutralization antibody supplementation into ovarian culture system.
Results
HA not only prolongs the retention of UC-MSCs in the ovary, but also boosts their secretory function, and UC-MSCs promote follicular survival by activating the PI3K-AKT pathway through a paracrine mechanism both in vitro and in vivo. More importantly, HGF is identified as the key functional cytokine secreted by MSCs.
Conclusions
The results show that HA is an excellent cell scaffold to improve the treatment efficiency of UC-MSCs for ovarian aging under both physiological and pathological conditions, and the therapeutic mechanism is through activation of the PI3K-AKT pathway via HGF. These findings will facilitate the clinical application of MSCs transplantation for ovarian disorders.