2015
DOI: 10.1186/1687-6180-2015-2
|View full text |Cite
|
Sign up to set email alerts
|

Soft context clustering for F0 modeling in HMM-based speech synthesis

Abstract: This paper proposes the use of a new binary decision tree, which we call a soft decision tree, to improve generalization performance compared to the conventional 'hard' decision tree method that is used to cluster context-dependent model parameters in statistical parametric speech synthesis. We apply the method to improve the modeling of fundamental frequency, which is an important factor in synthesizing natural-sounding high-quality speech. Conventionally, hard decision tree-clustered hidden Markov models (HM… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2021
2021

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 44 publications
0
1
0
Order By: Relevance
“…Hidden (semi)-Markov models are the state of the art for modeling univariate and multivariate time series data (Barbu & Limnios, 2009;Bulla et al, 2010;Yu, 2010;Maruotti, 2011;Bartolucci et al, 2013;Zucchini et al, 2016). Applications can be found in ecology (Bulla et al, 2012;Martinez-Zarzoso & Maruotti, 2013;Mastrantonio et al, 2015;Maruotti et al, 2016Patterson et al, 2017), medicine (Shirley et al, 2010;Maruotti & Rocci, 2012;Langrock et al, 2013;Lagona et al, 2014;Marino et al, 2018;Punzo et al, 2018;2019), finance (Bulla & Bulla, 2006;Bulla, 2011;Ang & Timmermann, 2012;Langrock et al, 2012;Bernardi et al, 2017;Hambuckers et al, 2018;, psychology (Visser, 2011), social sciences (Langrock, 2011;Punzo & M & P Maruotti, 2016;, sport performance (Ötting et al, 2020), speech recognition (Khorram et al, 2015), music modelling (Pikrakis et al, 2006), network performance (Nguyen & Roughan, 2012) and in many more empirical settings (see Yu, 2015, and references therein).…”
Section: Introductionmentioning
confidence: 99%
“…Hidden (semi)-Markov models are the state of the art for modeling univariate and multivariate time series data (Barbu & Limnios, 2009;Bulla et al, 2010;Yu, 2010;Maruotti, 2011;Bartolucci et al, 2013;Zucchini et al, 2016). Applications can be found in ecology (Bulla et al, 2012;Martinez-Zarzoso & Maruotti, 2013;Mastrantonio et al, 2015;Maruotti et al, 2016Patterson et al, 2017), medicine (Shirley et al, 2010;Maruotti & Rocci, 2012;Langrock et al, 2013;Lagona et al, 2014;Marino et al, 2018;Punzo et al, 2018;2019), finance (Bulla & Bulla, 2006;Bulla, 2011;Ang & Timmermann, 2012;Langrock et al, 2012;Bernardi et al, 2017;Hambuckers et al, 2018;, psychology (Visser, 2011), social sciences (Langrock, 2011;Punzo & M & P Maruotti, 2016;, sport performance (Ötting et al, 2020), speech recognition (Khorram et al, 2015), music modelling (Pikrakis et al, 2006), network performance (Nguyen & Roughan, 2012) and in many more empirical settings (see Yu, 2015, and references therein).…”
Section: Introductionmentioning
confidence: 99%