Nanotechnology enables the control and modification of the chemical and topographical characteristics of materials of size less than 100 nm, down to 10 nm. The goal of this review is to discuss the role of titanium substrates as nanoscale surface modification tools for improving various aspects of implantology, including osseointegration and antibacterial properties. Techniques that can impart nanoscale topographical features to endosseous implants are described. Since the advent of nanotechnology, cellular specific functions, such as adhesion, proliferation, and differentiation, have been better understood. By applying these technologies, it is possible to direct cellular responses and improve osseointegration. Conversely, modulating surface features by nanotechnology could have the effect of decreased bacterial colonization.