This review aims to provide valuable insights into how energy consumption in magnetic resonance imaging (MRI) and computed tomography (CT) scanners can be effectively monitored, managed, and reduced, thereby contributing to more sustainable medical imaging practices. Demand for advanced imaging technologies such as MRI and CT scanners continues to increase, and understanding the resultant impact on greenhouse gas emissions requires a thorough evaluation of their energy consumption. This review examines the energy monitoring and consumption characteristics of MRI and CT scanners, highlighting potential approaches for energy savings. An overview of MRI and CT principles, hardware components, and their associated energy consumption is provided. After addressing the technical aspects, the hardware and software requirements essential for accurate energy metering are detailed. Baseline measurements of energy consumption data are then provided as a foundation to understand current usage patterns and identify areas for improvement. Ongoing efforts to reduce energy consumption are categorized into 3 main strategies: operations, scanner design enhancements, and active scanning techniques, including accelerated MRI protocols. Ultimately, we emphasize that achieving sustainability in medical imaging requires collaboration across disciplines. By incorporating eco-friendly design in new imaging equipment, we can reduce the environmental impact, promote sustainability, and set a health care industry standard for a healthier planet.