Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics.
Boreal forest soils play an important role in the global carbon cycle (1) and are a net sink for atmospheric CO 2 (2, 3). Approximately 16% of the terrestrial carbon (C) stock is estimated to be stored in the boreal forest ecosystem (1). Fire is a natural disturbance in most forest ecosystems (4), and about 1% of the boreal forest burns annually (5). The frequency of forest fires in the northern boreal zone is expected to increase because of rising temperatures and more frequent dry periods resulting from ongoing climate change (6).Soil microbes perform essential ecological functions in forested ecosystems via nutrient cycling and decomposition of organic matter. Microbial activities control the turnover of organic C in soil and thus contribute to global C cycling (7). Fungi are the predominant decomposers in boreal soils and play a central role in the turnover of carbon and nitrogen (8). Ectomycorrhizal fungi form symbioses with both trees and ground vegetation in boreal forests. Many species of ground vegetation can additionally form symbioses with ericoid mycorrhizal fungi. Boreal forest ecosystem productivity is linked to plant nutrient acquisition from the microbial community via soil organic matter (SOM) decomposition. Forest fires result in the loss of mycorrhizal host plants and may modify the SOM chemistry, leading to dramatic changes in soil microbial activity (9, 10). Fire disturbance often increases soil pH and causes changes in soil temperature due to loss of canopy cover, bo...