Background:The perennial medicinal herb Dioscorea zingiberensis is a very important plant used for steroid drug manufacturing for its high level of diosgenin in rhizome. Although the stimulation of diosgenin accumulation by ethylene has been reported in a few of plant species, its regulation is not yet characterized at the molecular level, the underlying molecular mechanism remains elusive. Results: In this study, the effects of ethylene on diosgenin biosynthesis in in vitro cultures of D. zingiberensis were described. The results showed that, in samples treated with ethylene at concentration E3 (10 4 dilution of 40% ethephon), the diosgenin biosynthesis was significantly promoted in comparison with the control samples. Treatment with high concentrations of ethylene had inhibitory effect, whereas with low concentration of the gas elicitor brought about no detectable deleterious effect on the growth rate and diosgenin content of the cultures. The considerable increase of diosgenin level in in vitro cultured Dioscorea zingiberensis by ethylene application is accompanied by the concomitant increase of soluble proteins and chlorophyll content. The gene expressions of cycloartenol synthase and 3-hydroxy-3-methylglutaryl-CoA reductase but not of squalene synthase or farnesyl pyrophosphate synthase were up-regulated by applied ethylene. Conclusions: Our results suggest that ethylene treatment enhanced diosgenin accumulation via upregulation of the gene expressions of cycloartenol synthase and 3-hydroxy-3-methylglutaryl-CoA reductase.