Black nightshades are a group of species best known for their 'poisonous' or noxious weedy reputation. It is not so well known that species of this group serve as emerging food source in many countries worldwide especially in the African continent. Despite the fact that the section has recently been studied extensively, taxonomy is still unsettled and debated because of inter- and intraspecific hybridization, phenotypic plasticity and polyploidization. In this study we analyze the genetic relationships among diploid, tetraploid and hexaploid species of sect. Solanum, which have possibly taken part in the formation of Solanum nigrum, utilizing multi-locus (SCoT, ISSR) markers combined with chloroplast trnL-F sequence data and morphological characters. We scored 51 morphological characters united with SCoT (171), ISSR (224) and trnL-F (1042), for simultaneous analysis of 49 terminals and 1488 characters. The topology of the tree is concordant with the results of the network analysis. In the phylogenetic networks, all the accessions of the diploid species shared a split with all of the polyploid species. This reflected a high portion of shared ISSR and SCoT bands between diploids and polyploids. In addition, a strong split divided the diploid species. The history of S. nigrum might be reticulate with hybrid speciation playing an important rule. Genetically differentiated diploids in few combinations have created a series of genetically distinct polyploid populations. The insufficient isolation that permitted further recombination between ancient polyploids and diploids have resulted in high level of genotypic and phenotypic polymorphism. This high level of novel genomic variability obviously enabled species to succeed in their new environment.