2015
DOI: 10.1016/j.cbpa.2015.01.001
|View full text |Cite
|
Sign up to set email alerts
|

Solar-driven proton and carbon dioxide reduction to fuels — lessons from metalloenzymes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

1
66
0
1

Year Published

2015
2015
2021
2021

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 53 publications
(68 citation statements)
references
References 74 publications
1
66
0
1
Order By: Relevance
“…Ideally, the distance from the CN x –TiO 2 surface to the [Fe 4 S 4 ] electron transport chain should be minimised and an improved orientation of the enzyme would allow trapping of CB TiO 2 electrons more efficiently for maximised turnover. 19 …”
Section: Resultsmentioning
confidence: 99%
“…Ideally, the distance from the CN x –TiO 2 surface to the [Fe 4 S 4 ] electron transport chain should be minimised and an improved orientation of the enzyme would allow trapping of CB TiO 2 electrons more efficiently for maximised turnover. 19 …”
Section: Resultsmentioning
confidence: 99%
“…Electrodes constructed of metal oxide semiconductors have become increasingly important in both PFE studies and metalloenzyme biotechnological device development. In particular, n‐type metal oxide semiconductors such as TiO 2 , indium tin oxide (ITO) and CdS were used for solar fuel applications and NADH recycling . TiO 2 electrode surfaces are rough, porous structures consisting of aggregated nanoparticles .…”
Section: Carbon Electrodesmentioning
confidence: 99%
“…In particular, n‐type metal oxide semiconductors such as TiO 2 , indium tin oxide (ITO) and CdS were used for solar fuel applications and NADH recycling . TiO 2 electrode surfaces are rough, porous structures consisting of aggregated nanoparticles . The CdS surface topology is similar, comprising a highly porous three‐dimensional network of CdS sheets .…”
Section: Carbon Electrodesmentioning
confidence: 99%
See 1 more Smart Citation
“…Hydrogenasen als Fe-Cluster-haltige Metalloenzyme katalysieren die Reduktion von Protonen zu molekularem Wasserstoff (oder die entgegengesetzte Reaktion) und wurden in den letzten Jahren intensiv als Katalysatoren für die solargetriebene Brennstoffherstellung erforscht, da ihre Aktivitäta nd ie anorganischer Katalysatoren wie Pt heranreicht. Aktuelle Forschungsansätze beschäftigen sich damit, Wege zur direkten Photoaktivierung von Hydrogenasen zu finden, in dem durch spezifische/nicht-spezifische Wechselwirkungen mittels kovalenter Bindung oder physikalischer Adsorption Kontakte zwischen organischen (oder anorganischen) Photosensibilisatoren und Hydrogenasen hergestellt werden [34,[88][89][90][91][92][93][94][95]. Die Eisen-Schwefel-Cluster, wie beispielsweise 4Fe-4S,b ilden hierbei die Elektronentransferkette,w elche die bençtigten Elektronen an das ins Innere des Enzyms eingebettete aktive Zentrum liefert.…”
unclassified