Ti O 2 nanotube layers were grown on titanium by a self-organized anodic oxidation. The layers consist of arrays of individual tubes with a length of ∼2μm, a diameter of ∼100nm, and a wall thickness of ∼10nm. These layers can be annealed to an anatase structure which strongly increases the photocurrent efficiency. Moreover, the nanotube layers can—under certain conditions—exhibit a drastically enhanced photocurrent compared to compact anatase layers. These strong changes in the photoresponse are attributed to the characteristics of the space charge layer within the tube wall.
TiO 2 -based nanomaterials play currently a major role in the development of novel photochemical systems and devices. One of the key parameters determining the photoactivity of TiO 2 -based materials is the position of the band edges. Although its knowledge is an important prerequisite for understanding and optimizing the performance of photochemical systems, it has been often rather neglected in recent research, particularly in the field of heterogeneous photocatalysis. This paper provides a concise account of main methods for the determination of the position of the band edges, particularly those suitable for measurements on nanostructured materials. In the first part, a survey of key photophysical and photochemical concepts necessary for understanding the energetics at the semiconductor/solution interface is provided. This is followed by a detailed discussion of several electrochemical, photoelectrochemical, and spectroelectrochemical methods that can be applied for the determination of band edge positions in compact and nanocrystalline thin films, as well as in nanocrystalline powders.
Surface-modification of TiO(2) is found to be a powerful tool for manipulating the fundamental optical and photoelectrochemical properties of TiO(2). High surface area nanocrystalline TiO(2) was modified by urea pyrolysis products at different temperatures between 300 degrees C and 500 degrees C. Modification occurs through incorporation of nitrogen species containing carbon into the surface structure of titania. The N1s XPS binding energies are 399-400 eV and decrease with increasing modification temperature whereby the Ti2p(3/2) peak is also shifted to lower binding energies by about 0.5 eV. With increasing modification temperature the optical bandgap of surface-modified TiO(2) continuously decreases down to approximately 2.1 eV and the quasi-Fermi level of electrons at pH 7 is gradually shifted from -0.6 V to -0.3 V vs. NHE. The surface-modified materials show enhanced sub-bandgap absorption (Urbach tail) and exhibit photocurrents in the visible down to 750 nm. The maximum incident photon-to-current efficiency (IPCE) was observed for the materials modified at 350 degrees C and 400 degrees C (IPCE approximately 14% at 400 nm, and IPCE approximately 1% at 550 nm, respectively). The efficiency of photocurrent generation is limited by surface recombination, which leads to a significant decrease in IPCE values and significantly changes the shape of the IPCE spectra in dependence on the optical bandgap.
Heptazine‐based polymeric carbon nitrides (PCN) are promising photocatalysts for light‐driven redox transformations. However, their activity is hampered by low surface area resulting in low concentration of accessible active sites. Herein, we report a bottom‐up preparation of PCN nanoparticles with a narrow size distribution (ca. 10±3 nm), which are fully soluble in water showing no gelation or precipitation over several months. They allow photocatalysis to be carried out under quasi‐homogeneous conditions. The superior performance of water‐soluble PCN, compared to conventional solid PCN, is shown in photocatalytic H2O2 production via reduction of oxygen accompanied by highly selective photooxidation of 4‐methoxybenzyl alcohol and benzyl alcohol or lignocellulose‐derived feedstock (ethanol, glycerol, glucose). The dissolved photocatalyst can be easily recovered and re‐dissolved by simple modulation of the ionic strength of the medium, without any loss of activity and selectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.