Mitigation of post-occupancy building energy consumption has resulted in the change of building design to utilise ambient weather factors for indoor thermal conditioning and lighting. This has increased the construction of new buildings with large glazing façades and reduced adaptive use of heritage buildings as they are considered not designed to meet modern energy use requirements. This paper evaluates the daylighting performance of a heritage place of instruction and office building. A quantitative research approach based on building information simulation tools was adopted. Autodesk Revit 2021 and Integrated Environmental Solutions Virtual Environment (IESVE) 2021 were used in modelling and simulating the building daylighting performances. The building’s annual daylight performance analysed with climate-based daylight modelling shows that points in the analysed spaces were within the UDI300-2000 for more than 50% of the occupied period (07h00 to 17h00) in a year. The sDA300,50% was found to be 100% in most spaces, which is considered a favourable daylit space according to the Illuminance Engineering Society of North America (IESNA). Further, discomfort glare analysis revealed that the building daylight glare is imperceptible, with an average daylight glare probability of 21.2%. The 1:14 window–wall ratio contributes to the building daylighting relative to orientation without constituting visual discomfort. Overall, climate-based daylight modelling revealed that the building’s annual daylight level meets the IESNA requirements with an imperceptible daylight glare.