The recent rapid development in perovskite solar cells (PSCs) has led to significant research interest due to their notable photovoltaic performance, currently exceeding 25% power conversion efficiency for small-area PSCs. The materials used to fabricate PSCs dominate the current photovoltaic market, especially with the rapid increase in efficiency and performance. The present work reviews recent developments in PSCs’ preparation and fabrication methods, the associated advantages and disadvantages, and methods for improving the efficiency of large-area perovskite films for commercial application. The work is structured in three parts. First is a brief overview of large-area PSCs, followed by a discussion of the preparation methods and methods to improve PSC efficiency, quality, and stability. Envisioned future perspectives on the synthesis and commercialization of large-area PSCs are discussed last. Most of the growth in commercial PSC applications is likely to be in building integrated photovoltaics and electric vehicle battery charging solutions. This review concludes that blade coating, slot-die coating, and ink-jet printing carry the highest potential for the scalable manufacture of large-area PSCs with moderate-to-high PCEs. More research and development are key to improving PSC stability and, in the long-term, closing the chasm in lifespan between PSCs and conventional photovoltaic cells.