Seeking to establish whether active-region upflow material contributes to the slow solar wind, we examine in detail the plasma upflows from Active Region (AR) 10978, which crossed the Sun's disc in the interval 8 to 16 December 2007 during Carrington rotation (CR) 2064. In previous work, using data from the Hinode/EUV Imaging Spectrometer, upflow velocity evolution was extensively studied as the region crossed the disc, while a linear forcefree-field magnetic extrapolation was used to confirm aspects of the velocity evolution and to establish the presence of quasi-separatrix layers at the upflow source areas. The plasma properties, temperature, density, and first ionisation potential bias [FIP-bias] were measured with the spectrometer during the disc passage of the active region. Global potential-field source-surface (PFSS) models showed that AR 10978 was completely covered by the closed field of a helmet streamer that is part of the streamer belt. Therefore it is not clear how any of the upflowing AR-associated plasma could reach the source surface at 2.5 R and contribute to the slow solar wind. However, a detailed examination of solar-wind in-situ data obtained by the Advanced Composition Explorer (ACE) spacecraft at the L 1 point shows that increases in O 7+ /O 6+ , C 6+ /C 5+ , and Fe/O -a FIP-bias proxy -are present before the heliospheric current-sheet crossing. These increases, along with an accompanying reduction in proton velocity and an increase in density are characteristic of both AR and slow-solarwind plasma. Finally, we describe a two-step reconnection process by which some of the upflowing plasma from the AR might reach the heliosphere.