Immune response suppressors are used in the medical praxis to prevent graft rejection after organ transplantation and in the therapy of some autoimmune diseases. As a continuation of our previous work searching for new, effective suppressors devoid of toxicity, we present the synthesis, conformational analysis, and biological activity of nonapeptides 1-6, analogs of naturally existing immunomodulatory peptide CLA. New CLA analogs were modified with (S)-beta(2)-iso-proline 7 or (S)-beta(3)-homo-proline 8, respectively. The conformational influence of the beta-iso-proline and beta-homo-proline building blocks was analyzed by NMR spectroscopy. Peptides 1-6 exist as a mixture of four isomers due to cis/trans isomerization of the Xxx-Pro peptide bond. The major isomers of peptides 1, 3, and 4 contain all peptide bonds of the trans geometry. The geometry of the proline-proline bond of the second populated isomer of peptides 3 and 4 is cis. The proline-proline peptide bond is cis for the major isomers of peptides 2, 5, and 6. The peptides were tested for their ability to suppress the proliferative response of mouse splenocytes to T- and B-cell mitogens and the secondary humoral immune response to sheep erythrocytes in vitro in parallel with a reference drug-cyclosporine A. The immunoregulatory actions of the peptides depended on the position and content of proline isomers and were, with some exceptions, strongly inhibitory at the highest dose tested (100 microg/ml). In addition, the peptides were practically devoid of toxicity at that dose. In conclusion, the replacement of Pro by beta-Pro may be useful for fine-tuning CLA immunosuppressive potency and undesirable toxicity.