There is compelling evidence that members of the caspase (interleukin-1 converting enzyme/CED-3) family of cysteine proteases and the cytotoxic lymphocytederived serine protease granzyme B play essential roles in mammalian apoptosis. Here we use a novel method employing a positional scanning substrate combinatorial library to rigorously define their individual specificities. The results divide these proteases into three distinct groups and suggest that several have redundant functions. The specificity of caspases 2, 3, and 7 and Caenorhabditis elegans CED-3 (DEXD) suggests that all of these enzymes function to incapacitate essential homeostatic pathways during the effector phase of apoptosis. In contrast, the optimal sequence for caspases 6, 8, and 9 and granzyme B ((I/L/V)EXD) resembles activation sites in effector caspase proenzymes, consistent with a role for these enzymes as upstream components in a proteolytic cascade that amplifies the death signal.
The results presented in this study establish a positional-scanning library as a powerful tool for rapidly and accurately assessing protease specificity. The preferred sequence for ICE (WEHD) differs significantly from that found in human pro-interleukin-1beta (YVHD), which suggests that this protease may have additional endogenous substrates, consistent with evidence linking it to apoptosis and IL-1alpha production.
The first total synthesis of the antitumor antibiotic (+)-hitachimycin (a.k.a. stubomycin) (1) has been achieved in 22 steps and 1.1% overall yield. The cornerstone of the synthetic strategy was a highly stereoselective three-component coupling of (-)-5-methoxycyclopentenone (4) with a zincate derived from vinyl iodide 3a and aldehyde (-)-51.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.