Highly efficient simultaneous removal of atrazine and Cu(II) was accomplished using synthesized polyacrylic acid-functionalized magnetic ordered mesoporous carbon (P-MMC) as compared to magnetic ordered mesoporous carbon (MMC) and ordered mesoporous carbon (OMC). The mutual effects and interactive mechanism of their adsorption onto P-MMC were investigated systematically by binary, preloading and thermodynamic adsorption procedures. In both binary and preloading systems, the adsorption of atrazine was inhibited to some extent by the presence of Cu(II) because of selective recognition and direct competition, but the presence of atrazine had negligible effect on Cu(II) desorption. With the coexistence of humic acid (0–20 mg L−1), both atrazine and Cu(II) sorption increased slightly in sole and binary systems. With the concentration of coexisting NaCl increasing from 0 to 100 mM, the adsorption capacity for Cu(II) slightly decreased, but as for atrazine adsorption, it decreased at first, and then increased slightly in sole and binary systems. P-MMC was applied to treat real environmental samples, and the sorption capacities for atrazine and Cu(II) in real samples were all more than 91.47% and 96.43% of those in lab ultrapure water, respectively. Finally, comprehensively considering the relatively good renewability and the superior behavior in the application to real water samples, P-MMC has potential in removal of atrazine, Cu(II) and possibly other persistent organic pollutants from wastewater.