The preparation of materials with limited phase stabilities yet high kinetic activation barriers is challenging. Knowledge of their possible formation pathways aids in addressing these challenges. Metathesis reactions present an approach to circumvent these barriers; however, solid-state metathesis reactions are often too rapid from extensive self-heating to understand the reaction. The stoichiometric reaction of MCl2 salts (M = Mn, Fe, Co, Ni, Cu, Zn) with Na2S2 enables the formation of pyrite (FeS2), CoS2, and NiS2 at low temperatures (250-350 °C). Na2S2 has the same polyanionic dimer as found in the pyrite structure, which would suggest the possibility of a facile ion-exchange reaction. However, from high-resolution synchrotron X-ray diffraction and differential scanning calorimetry, the energetic driving force does not appear to result solely from NaCl formation but also from formation of intermediate and pyrite phases. It is apparent that the reaction proceeds through polyanionic disproportionation and formation of a low-density alkali-rich intermediate, followed by anionic comproportionation and atomic rearrangement into the pyrite phase. These results have profound implications for the use of low-temperature metathesis in achieving materials by design.