In this study, nanostructured microparticles was developed with polycaprolactone (PCL), poly(vinyl alcohol) (PVAL) and nanoparticles of the commercial sodium clay NT-25® by using the spray drying technique. The systems obtained were characterized by Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Dynamic Laser Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). The NMR 13 C and FTIR techniques showed that both polymers were present in the microparticles and the DSC analysis revealed a small variation in the glass transition temperature of the PCL. The XRD and SEM analyses showed that the microparticles produced were amorphous and had a concave morphology. The NT-25 nanoload reduced the microparticles' size due to the multiple interactions formed in the hybrid nanocomposite material. Therefore, it was possible to develop microparticles by using biodegradable and biocompatible polymers, with different polarities, allowing the incorporation of hydrophilic and hydrophobic materials and enabling the inclusion of otherwise incompatible materials in the same system.