The regional Floridan aquifer system (FAS) extends from the submerged carbonate platform of the Atlantic Ocean, Gulf of Mexico, and Straits of Florida in the southeastern United States (US), throughout Florida and the coastal plain of Alabama, Georgia, and South Carolina. This carbonate aquifer system is characterized by bedding planes, fractures, dissolution cavities, and other karst features that result in preferential flow of ground water, particularly in response to anthropogenic perturbations such as groundwater withdrawals and aquifer injections. The FAS was divided into six sub-regions for groundwater-modeling purposes in 1989, with results concluding that breaches of those groundwater divides had occurred and those breaches were attributed to large withdrawals of ground water in the US southeastern coastal plain. Those results suggest the model did not elucidate preferential flow conditions through fractures and other karst conduits. We hypothesized that incorporating fractures and sinkholes into groundwater models could improve results and predict adverse impacts to environmentally sensitive areas. We analyzed extensive fracture networks and sinkholes previously mapped throughout Florida and in Dougherty County, Georgia. Some of those fractures extend from one sub-region into an adjacent sub-region of the FAS and may be facilitating the breaching of groundwater divides described in the 1989 groundwater model for this regional aquifer system. The greater total fractures and fracture density in Dougherty County (1,225 and 141.3/100 km 2 , respectively) compared to 21 north-Florida counties (10-91fractures per county and 0.6-3.8/100 km 2 , respectively) presumably is due to the scale of fracture mapping and shorter mean lengths of mapped fractures in Dougherty County (1.2 km), compared to north Florida counties (26-118 km), rather than to orders of magnitude increases in fracture densities in that part of the FAS. The number of sinkholes identified in Dougherty County in a recent, unrelated project using 2011 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, was approximately an order of magnitude greater than the number of sinkholes mapped in analog form in that county and published in 1986.