Colloidal quantum dots (CQDs) are emerging as promising materials for the next generation infrared (IR) photodetectors, due to their easy solution processing, low cost manufacturing, size‐tunable optoelectronic properties, and flexibility. Tremendous efforts including material engineering and device structure manipulation have been made to improve the performance of the photodetectors based on CQDs. In recent years, benefiting from the facial integration with materials such as 2D structure, perovskite and silicon, as well as device engineering, the performance of CQD IR photodetectors have been developing rapidly. On the other hand, to prompt the application of CQD IR photodetectors, scalable device structures that are compatible with commercial systems are developed. Herein, recent advances of CQD based IR photodetectors are summarized, especially material integration, device engineering, and scalable device structures.