While MnII complexes meet increasing interest in biomedical applications, ligands are lacking that enable high MnII complex stability and selectivity vs. ZnII, the most relevant biological competitor. We report here two new bispidine derivatives, which provide rigid and large coordination cavities that perfectly match the size of MnII, yielding eight‐coordinate MnII complexes with record stabilities. In contrast, the smaller ZnII ion cannot accommodate all ligand donors, resulting in highly strained and less stable six‐coordinate complexes. Combined theoretical and experimental data (X‐ray crystallography, potentiometry, relaxometry and 1H NMR spectroscopy) demonstrate unprecedented selectivity for MnII vs. ZnII (KMnL/KZnL of 108–1010), in sharp contrast to the usual Irving–Williams behavior, and record MnII complex stabilities and inertness with logKMnL close to 25.