This paper is concerned with description of the existence and the forms of entire solutions of several second-order partial differential-difference equations with more general forms of Fermat type. By utilizing the Nevanlinna theory of meromorphic functions in several complex variables we obtain some results on the forms of entire solutions for these equations, which are some extensions and generalizations of the previous theorems given by Xu and Cao (Mediterr. J. Math. 15:1–14, 2018; Mediterr. J. Math. 17:1–4, 2020) and Liu et al. (J. Math. Anal. Appl. 359:384–393, 2009; Electron. J. Differ. Equ. 2013:59–110, 2013; Arch. Math. 99:147–155, 2012). Moreover, by some examples we show the existence of transcendental entire solutions with finite order of such equations.