The limited structural diversity that a compound library represents severely restrains the discovery of bioactive small molecules for medicinal chemistry and chemical biology research, and thus calls for developing new divergent synthetic approaches to structurally diverse and complex scaffolds. Here we present a de novo branching cascades approach wherein simple primary substrates follow different cascade reactions to create various distinct molecular frameworks in a scaffold diversity phase. Later, the scaffold elaboration phase introduces further complexity to the scaffolds by creating a number of chiral centres and incorporating new hetero-or carbocyclic rings. Thus, employing N-phenyl hydroxylamine, dimethyl acetylenedicarboxylate and allene ester as primary substrates, a compound collection of sixty one molecules representing seventeen different scaffolds is built up that delivers a potent tubulin inhibitor, as well as inhibitors of the Hedgehog signalling pathway. This work highlights the immense potential of cascade reactions to deliver compound libraries enriched in structural and functional diversity.