Extraordinary electronic and photonic features (e.g., tunable direct bandgap, high ambipolar carrier mobility) render few-layer black phosphorus (BP) nanosheets/quantum dots an important optoelectronic material. However, most of the BP applied in metal halide perovskite solar cells (PSCs) are produced by sonication-assisted liquid exfoliation, which inevitably brings inferior electronic properties, thus leading to limited beneficial effects. Furthermore, this study uncovers that the intrinsic instability of BP nanosheets sandwiched between (CsFAMA)Pb(BrI) 3 perovskite and spiro-OMeTAD has a deleterious effect on the performance stabilization of PSCs. To address the above constraints, a feasible strategy herein is developed by introducing high-quality fluorinated BP (F-BP) nanosheets synthesized by one-step electrochemical delamination. In addition to P-Pb coordination, there is a strong hydrogen bond between F − and MA + /FA + as well as an ionic bond between F − and Pb 2+ for the perovskite/F-BP interface, thus leading to fewer interfacial traps than perovskite/BP, which is responsible for the highest power conversion efficiency (22.06%) of F-BP devices. More importantly, F-BP devices exhibit significantly improved humidity and shelflife stabilities due to the excellent ambient stability of F-BP, resulting from the antioxidation and antihydration behavior of fluorine adatoms. Overall, the findings provide a promising strategy to simultaneously enhance the photovoltaic performance and long-term stability of BP-based PSCs.