“…The stoichiometry of various metal-extractant complexes in different diluents have been reported, for instance, 1:4 and 1:2 for Cu(II)-di-2-ethylhexylphosphoric acid (D2EHPA) complexes in soybean oil (Chang et al, 2011) and waste palm cooking oil (Wahab et al, 2016), respectively; 1:2 for Cu(II)-2-hydroxy-5-nonylacetophenone oxime (active component of LIX 84) complexes in toluene (Elizalde et al, 2019); 1:6 for Nd(III)-D2EHPA complexes in sulfonated kerosene (Yin et al, 2015); 1:3 for Ga(III)-hexaacetato calix(6)arene in xylene (Thakare and Malkhede, 2014); and 1:2 for hydrated Ni(II)-dinonylnaphthalene disulfonic acid and 2-ethylhexyl 4-pyridinecarboxylate ester complexes in sulfonated kerosene (Hu et al, 2018). The majority of these works used either the equilibrium slope or numerical analysis, or both, to determine the stoichiometry of metal-extractant complexes (Chang et al, 2011;Elizalde et al, 2019;Thakare and Malkhede, 2014;Wahab et al, 2016;Yin et al, 2015). Other methods like the Job plot (Wahab et al, 2016) and quantitative analysis with FTIR (Chang et al, 2011) (Aidi and Barkat, 2018) and Cu(II)-N-(2 hydroxybenzylidene) aniline (Aidi and Barkat, 2010) complexes, respectively, in cyclohexane; ∆H o of 25.65 kJ•mol -1 , ∆S o of 0.079 kJ•mol -1 •K -1 , and ∆G o of 0.86 kJ•mol -1 for Zn(II)-D2EHPA complexes in kerosene (Jafari et al, 2018); and ∆H o of 17.32 kJ•mol -1 , ∆S o of 0.041 kJ•mol -1 •K -1 , and ∆G o of 5.09 kJ•mol -1 for vanadium(V)-D2EHPA complexes in kerosene (Razavi et al, 2018).…”