Under the background of urbanization and the rapid development of urban rail transit (URT), serious attention has been focused on URT network reliability in recent years. In this work, in order to measure network reliability, three indicators are constructed based on passengers' tolerable travel paths, passenger travel efficiency and passenger travel realization on a URT network. The passenger tolerability coefficient, which is the ratio of passengers' tolerable travel time to the shortest possible travel time, is proposed and added to the indicators. It reflects passengers' behavior with respect to choice of travel paths. The ratio of affected passenger volume (RAPV) is proposed to identify important stations. Finally, the connectivity reliability of Wuhan's subway network is analyzed by simulating attacks on stations. The results show that the degree centrality, betweenness centrality and RAPV indicators of stations can effectively identify the important stations that have a significant impact on the connectivity reliability of the network. In particular, the RAPV indicator effectively identifies stations that have the greatest influence on passenger travel realization. The connectivity reliability of Wuhan's subway network is sensitive to passenger tolerability coefficient, and reliability is greater during non-peak hours than during peak hours. In addition, the stations that are important to the connectivity reliability of the Wuhan subway have two features, i.e., they are located at the center of the city, and they are important for connecting subgraphs of the network.