Recently, automation, shared use, and electrification are viewed as the ''three revolutions'' in the future transportation sector, and the traditional scheduled public transit system will be greatly enhanced with flexible services and autonomous vehicle scheduling capabilities. Many emerging scheduled transportation applications include the fully automatic operation system in urban rail transit, joint line planning, and timetabling for high-speed rail as well as emerging self-driving vehicle dispatching. The vehicle routing problem (VRP) holds promise for seeking an optimal set of vehicle routes and schedules to meet customers' requirements and plays a vital role in optimizing services for feature scheduled transportation systems. Due to the difficulty of finding optimal solutions for large-scale instances, enormous research efforts have been dedicated to developing efficient algorithms, while our paper presents a unique perspective based on a timedependent and state-dependent path searching framework. An open-source and light-weight VRP with pickup and delivery with time windows (VRPPDTW) modeling package, namely VRPLite, has been developed in this research to provide a high-quality and computationally efficient solution engine for transportation on demand applications. This paper describes the space-time-state
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.