The Big Data phenomenon has spawned large-scale linear programming problems.
In many cases, these problems are non-stationary. In this paper, we describe a
new scalable algorithm called NSLP for solving high-dimensional, non-stationary
linear programming problems on modern cluster computing systems. The algorithm
consists of two phases: Quest and Targeting. The Quest phase calculates a
solution of the system of inequalities defining the constraint system of the
linear programming problem under the condition of dynamic changes in input
data. To this end, the apparatus of Fejer mappings is used. The Targeting phase
forms a special system of points having the shape of an n-dimensional
axisymmetric cross. The cross moves in the n-dimensional space in such a way
that the solution of the linear programming problem is located all the time in
an "-vicinity of the central point of the cross.Comment: Parallel Computational Technologies - 11th International Conference,
PCT 2017, Kazan, Russia, April 3-7, 2017, Proceedings (to be published in
Communications in Computer and Information Science, vol. 753