In this paper, a hybrid of Bat-Inspired Algorithm (BA) and Genetic Algorithm (GA) is proposed to solve N-queens problem. The proposed algorithm executes the behavior of microbats with changing pulse rates of emissions and loudness to final all the possible solutions in the initialization and moving phases. This dataset applied two metaheuristic algorithms (BA and GA) and the hybrid to solve N-queens problem by finding all the possible solutions in the instance with the input sizes of area 8*8, 20*20, 50*50, 100*100 and 500*500 on a chessboard. To find the optimal solution, consistently, ten run have been set with 100 iterations for all the input sizes. The hybrid algorithm obtained substantially better results than BA and GA because both algorithms were inferior in discovering the optimal solutions than the proposed randomization method. It also has been discovered that BA outperformed GA because it requires a reduced amount of steps in determining the solutions.