Abstract. In this paper, we introduce a new problem, called Top-k SAT, that consists in enumerating the Top-k models of a propositional formula. A Top-k model is defined as a model with less than k models preferred to it with respect to a preference relation. We show that Top-k SAT generalizes two well-known problems: the partial Max-SAT problem and the problem of computing minimal models. Moreover, we propose a general algorithm for Top-k SAT. Then, we give the first application of our declarative framework in data mining, namely, the problem of enumerating the Top-k frequent closed itemsets of length at least min (FCIM k min ). Finally, to show the nice declarative aspects of our framework, we encode several other variants of FCIM k min into the Top-k SAT problem.