Standardization of solver input languages has been a main driver for the growth of several areas within knowledge representation and reasoning, fostering the exploitation in actual applications. In this document we present the ASP-Core-2 standard input language for Answer Set Programming, which has been adopted in ASP Competition events since 2013.
Answer Set Programming (ASP) is a well-established paradigm of declarative programming that has been developed in the field of logic programming and nonmonotonic reasoning. Advances in ASP solving technology are customarily assessed in competition events, as it happens for other closely-related problemsolving technologies like SAT/SMT, QBF, Planning and Scheduling. ASP Competitions are (usually) biennial events; however, the Fifth ASP Competition departs from tradition, in order to join the FLoC Olympic Games at the Vienna Summer of Logic 2014, which is expected to be the largest event in the history of logic. This edition of the ASP Competition series is jointly organized by the University of Calabria (Italy), the Aalto University (Finland), and the University of Genova (Italy), and is affiliated with the 30th International Conference on Logic Programming (ICLP 2014). It features a completely re-designed setup, with novelties involving the design of tracks, the scoring schema, and the adherence to a fixed modeling language in order to push the adoption of the ASP-Core-2 standard. Benchmark domains are taken from past editions, and best system packages submitted in 2013 are compared with new versions and solvers. * Also affiliated with the University of Potsdam, Germany.
Abstract. Answer Set Programming (ASP) emerged in the late 1990s as a new logic programming paradigm which has been successfully applied in various application domains. Also motivated by the availability of efficient solvers for propositional satisfiability (SAT), various reductions from logic programs to SAT were introduced in the past. All these reductions either are limited to a subclass of logic programs, or introduce new variables, or may produce exponentially bigger propositional formulas.In this paper, we present a SAT-based procedure, called ASP-SAT, that (i) deals with any (non disjunctive) logic program, (ii) works on a propositional formula without additional variables (except for those possibly introduced by the clause form transformation), and (iii) is guaranteed to work in polynomial space. From a theoretical perspective, we prove soundness and completeness of ASP-SAT. From a practical perspective, we have (i) implemented ASP-SAT in Cmodels, (ii) extended the basic procedures in order to incorporate the most popular SAT reasoning strategies, and (iii) conducted an extensive comparative analysis involving also other state-of-the-art answer set solvers. The experimental analysis shows that our solver is competitive with the other solvers we considered, and that the reasoning strategies that work best on "small but hard" problems are ineffective on "big but easy" problems and vice versa.
Abstract. Propositional satisfiability (SAT) is a success story in Computer Science and Artificial Intelligence: SAT solvers are currently used to solve problems in many different application domains, including planning and formal verification. The main reason for this success is that modern SAT solvers can successfully deal with problems having millions of variables. All these solvers are based on the Davis-Logemann-Loveland procedure (DLL). In its original version, DLL is a decision procedure, but it can be very easily modified in order to return one or all assignments satisfying the input set of clauses, assuming at least one exists. However, in many cases it is not enough to compute assignments satisfying all the input clauses: Indeed, the returned assignments have also to be "optimal" in some sense, e.g., they have to satisfy as many other constraints -expressed as preferences-as possible. In this paper we start with qualitative preferences on literals, defined as a partially ordered set (poset) of literals. Such a poset induces a poset on total assignments and leads to the definition of optimal model for a formula ψ as a minimal element of the poset on the models of ψ. We show (i) how DLL can be extended in order to return one or all optimal models of ψ (once converted in clauses and assuming ψ is satisfiable), and (ii) how the same procedures can be used to compute optimal models wrt a qualitative preference on formulas and/or wrt a quantitative preference on literals or formulas. We implemented our ideas and we tested the resulting system on a variety of very challenging structured benchmarks. The results indicate that our implementation has comparable performances with other state-of-the-art systems, tailored for the specific problems we consider.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.