Using compactifications in the logarithmic cotangent bundle, we obtain a formula for the Chern classes of the pushforward of Lagrangian cycles under an open embedding with normal crossing complement. This generalizes earlier results of Aluffi and Wu‐Zhou. The first application of our formula is a geometric description of Chern‐Mather classes of an arbitrary very affine variety, generalizing earlier results of Huh which held under the smooth and schön assumptions. As the second application, we prove an involution formula relating sectional maximum likelihood (ML) degrees and ML bidegrees, which was conjectured by Huh and Sturmfels in 2013.